Data Entry Flexible Pavement Design FAARFIELD 1.305 Hands-On Training

Presented to: IX ALACPA Seminar on Airport Pavements Ciudad de Panamá, Panamá

By: David R. Brill, P.E., Ph.D.

Date: September 13, 2012

Federal Aviation Administration

Starting Screen – No Job Files Created

Creating/Naming a Job File

Copy Basic Section/Pavement Type from Samples

Copy Basic Section/Pavement Type from Samples

7 Basic Starting Structures in FAARFIELD

Section Name	Pavement Type
ACAggregate	New flexible on aggregate base
AConFlex	HMA overlay on flexible pavement
AConRigid	HMA overlay on rigid pavement
NewFlexible	New flexible on stabilized base
New Rigid	New rigid on stabilized base
PCConFlex	PCC Overlay on flexible
PCConRigid	Unbonded PCC on rigid

Be sure to select the pavement type that most correctly represents your design requirements.

Copy a Sample Pavement Section

Create a New Job Title

Create a New Job Title

Working With a Pavement Section

Working With a Pavement Section

- The selected sample pavement will appear.
- By default,
 FAARFIELD uses
 U.S. units.
- To change to metric, hit Alt-O to bring up the Options window.
- Select "Metric" and ' hit OK.

Working With a Pavement Section

Layer Placement Restrictions

- There are restrictions on placement of certain pavement layers, e.g.:
 - Cannot place an overlay below a surface course.
 - Cannot have two aggregate base layers (P-209 on P-209) in the structure.
 - Aggregate layer cannot be the surface layer.
- Some layer changes cause changes in the pavement type.
 - Changing the surface HMA layer to PCC will change the pavement type to new rigid.

- Click on the P-401 Surface thickness.
- Enter the new value of 125 mm.
- Hit OK.
- Next, change the P-401/P-403 stabilized base layer to 200 mm.

- Click on the subgrade CBR to change the value.
- Enter the new value for the material property.
- Click OK.
- **Some materials will have limits on allowable values.

Layer Types in FAARFIELD

Layer Type	Fixed Modulus
P-401/P-403 HMA Surface	1,379 MPa (200,000 psi)
P-401/P-403 HMA Base	2,760 MPa (400,000 psi)
P-501 PCC Surface	27,600 MPa (4,000,000 psi)
P-306 Econocrete Base	4,830 MPa (700,000 psi)
P-304 Cement Treated Base	3,450 MPa (500,000 psi)
P-301 Soil Cement Base	1,724 MPa (250,000 psi

 Layer moduli for P-209 crushed aggregate and P-154 uncrushed aggregate layers are determined internally in the program.

FAARFIELD - Create or Modify Airplanes for Section NewFlexible in Job PROJECT -Use "Clear List" to Airplane Group Airplane Gross Taxi Annual % Annual Generic Name (3) Weight (tns) Departures Growth De clear the existing Airbus DC10-10 207.745 2.263 0.00 Boeina airplanes B747-200B Other Commercial 395.986 832 0.00 Combi Mixed General Aviation Military. 0.00 **B777-200 ER** 287.804 425 External Library Library Airplanes SWL-50 SngW/hl-3 Sngl Whi-5 Sngl Whl-10 Sngl Whl-12.5 Sngl Whl-15 Snal Whl-20 Snal Whl-30 Snal Whl-45 Sngl Whl-60 Float Airplanes Remove Sngl Whl-75 Ade Dual Whl-10 Dual Whl-20 Dual Whi-30 Save List **Clear List** Dual Whl-45 Dual Whi-50 Dual Whi-60 Save to Float Dual Whl-75 Add Float ¥ Dual Whl-100 CDF Graph Back Help View Gear

×

41

11

B

Traffic Mix for This Example

No.	Name	Gross Wt., tns.	Annual Departures	Annual Growth, %
1	A320-100	68.400	600	0.00
2	A340-600 std	365.200	1,000	0.00
3	A340-600 std Belly	365.200	1,000	0.00
4	A380-800	562.001	300	0.00
5	B737-800	79.243	2,000	0.00
6	B747-400B Combi	397.801	400	0.00
7	B747-400 ER Pass.	414.130	300	0.00
8	B757-300	124.058	1,200	0.00
9	B767-400 ER	204.570	800	0.00
10	B777-300 ER	352.441	1,000	0.00
11	B787-8 (Preliminary)	220.446	600	0.00

- The job file *Workshop.JOB.xml* is included on your thumb drive handouts.
- The traffic list stored in this job file is the same as the one in this example.
- Hint: To avoid typing the airplane list by hand, try copying the above job file to the working directory and opening it in FAARFIELD.

Certain airplanes may appear in the list twice. This is to address the presence of wing gears and belly gears.

FAARFIELD treats these as two airplanes.

However, the weight and departures are interlocked.

Airplane Name (11)	Gross Taxi Weight (tns)	Annual Departures	% Annual Growth	-
A320-100	68.400	600	0.00	
A340-600 std	365.200	1,000	0.00	
A340-600 std Belly	365.200	1,000	0.00	
A380-800	562.001	300	0.00	
B737-800	79.243	2,000	0.00	
B747-400B Combi	397.801	400	0.00	
B747-400ER Passenger	414.130	300	0.00	
•		1	1	F

Adjusting Airplane Information

Gross Taxi Weight, Annual Departures and % Annual Growth may be modified.

Airplane Group Generic	Airplane Name (11)	Gross Taxi Weight (tns)	Annual Departures	% Annual Growth	
Airbus Boeina	A320-100	68.400	600	0.00	
Other Commercial	A340-600 std	365.200	1,000	0.00	
cieneral Aviation Military Evternal Library	A340-600 std Belly	365.200	1,000	0.00	
Library Aimlanes	A380-800	562.001	300	0.00	
SWL-50	B737-800	79.243	2,000	0.00	
Singl Whl-3 Singl Whl-5	B747-400B Combi	397.801	400	0.00	
Sngl Whl-10 Sngl Whl-12.5	B747-400ER Passenger	414.130	300	0.00	
ongi Whi-15 Singl Whi-20	•		i	i	

Adjusting Airplane Information - Gross Weight

Adjusting Airplane Information - Gross Weight

- There are limitations on changes to airplane gross weights.
- A range is provided for each airplane which represents reasonable weights for the airplane:
 - Default Weight 40%
 - Default Weight + 25%

Annual Departures in FAARFIELD

- Annual departures has the same meaning as in the previous design procedure.
- Arrivals are ignored.
- For design purposes, FAARFIELD uses the total annual departures, multiplied by the design period in years:
 - e.g., 1200 annual departures \times 20 years = 24,000 departures.

Adjusting Airplane Information - % Annual Growth of Annual Departures

Click on the annual growth value to - bring up the dialog box.

Enter the percent annual growth and click OK.

Adjusting Airplane Information - % Annual Growth of Annual Departures

Enter a new value for percent incremental annual departures in the range: -10.00 to 10.00	ОК
-10.00 to 10.00	
	Cancel
Click Cancel at any time to retain the old value.	

- Allowable range of percent annual growth is +/- 10%.
- You can create the same effect by modifying the annual departures.

Viewing Airplane Information

Scroll over to reveal additional columns of information.

Viewing Airplane Information

Available in FAARFIELD Airplane Screen:

Airplane Name (11)	Gross Taxi Weight (tns)	Annual Departures	% Annual Growth	Total Departures	CDF Contribution	CDF Max for Airplane
A320-100	68.400	600	0.00	12,000	0.00	0.00
A340-600 std	365.200	1,000	0.00	20,000	0.00	0.00
A340-600 std Belly	365.200	1,000	0.00	20,000	0.00	0.00
A380-800	562.001	300	0.00	6,000	0.00	0.00
B737-800	79.243	2,000	0.00	40,000	0.00	0.00
B747-400B Combi	397.801	400	0.00	8,000	0.00	0.00
B747-400ER Passenger	414.130	300	0.00	6,000	0.00	0.00
B757-300	124.058	1,200	0.00	24,000	0.00	0.00

P/C Ratio	Tire Press. (kPa)	Percent GW on Gear	Dual Spacing (mm)	Tandem Spacing (mm)	Tire Contact Width (mm)	Tire Contact Length (mm)	Tire Contact Area (mm^2)
0.00	1,380	47.5	927.1	0.0	303.1	485.0	115,442.5
0.00	1,606	32.8	1,397.0	1,981.2	381.6	610.6	529,468.5
0.00	1,531	29.3	1,168.4	1,981.2	261.3	418.0	555,703.5
0.00	1,338	95.0	1,348.7	1,699.3	394.6	631.4	195,717.9
0.00	1,407	47.5	863.6	0.0	323.1	517.0	131,218.1
0.00	1,379	95.0	1,117.6	1,473.2	365.6	585.0	167,973.5
0.00	1,572	95.0	1,117.6	1,473.2	349.4	559.0	153,393.5
0.00	1,379	47.5	863.6	1,143.0	288.7	462.0	104,767.9

Viewing Airplane Information

Values in CDF and P/C ratio columns will be zero when airplanes are first entered.

Save the list when finished entering, then click the Back button.

Performing the Pavement Design

Layers Adjusted During Design

PAVEMENT TYPE	LAYER ADJUSTED
ACAggregate	P-154 Subbase
AConFlex	P-401 AC Overlay
AConRigid	P-401 AC Overlay
NewFlexible	P-209 Subbase
NewRigid	PCC Surface
PCConFlex	PCC Overlay on Flex
PCConRigid	PCC Overlay Unbond

For new flexible sections, the arrow can be moved by double-clicking next to the desired base or subbase layer in "modify structure" mode.

Design Life

Performing the Pavement Design

Result of the Pavement Design

Reviewing Airplane Data After Completing the Design

CDF and P/C ratio information is now available.

This information allows you to see which airplanes have the largest impact on the pavement design.

FAARFIELD - Create or M	Aodify Airplanes for S	ection NewFlex	ible in Job PROJ	ЕСТ [×
Airplane Group	Airplane Name (11)	CDF Contribution	CDF Max for Airplane	P/C Ratio	-	
Airbus Boeing	A380-800	0.01	0.01	0.42		
Other Commercial	B737-800	0.00	0.00	1.22		
General Aviation Military	B747-400B Combi	0.01	0.01	0.57		
External Library	B747-400ER Passenger	0.01	0.02	0.57		
SWI-50	B757-300	0.00	0.00	0.73		
Sngl Whi-3	B767-400 ER	0.04	0.05	0.60		
Sngl Whi-5 Sngl Whi-10	B777-300 ER	0.86	0.86	0.40		
Sngl Whl-12.5	B787-8 (Preliminary)	0.03	0.03	0.58		
Sngl Whi-15 Sngl Whi-20 Sngl Whi-30	•			ļ		
Sngl Whl-60 Sngl Whl-75 Dual Whl-10	Add	Remov	/e	oat Airplanes	-	
Dual Whi-20 Dual Whi-30 Dual Whi-45 Dual Whi-50	<u>Save List</u>	<u>C</u> lear L	ist			
Dual Whl-60 Dual Whl-75 Dual Whl-100	Save to <u>F</u> loa	Add F <u>l</u> o	at			
<u>B</u> ack	<u>H</u> elp	CDF Gra	aph	<u>V</u> iew Gear		

Reviewing Design Information

To view a summary of the design information, click the "Notes" button.

Reviewing Design Information

Reviewing Design Information

	Design Information for Section NewFlexible
Notice the statement "asphalt CDF was not computed."	FAARFIELD - Airport Pavement Design (V 1.305, 9/28/10 64-bit) Section NewFlexible in Job PROJECT. Working directory is C:\Program Files\FAA\Workshop\
This means the design assumed the failure was in the subgrade and did not calculate the fatigue in the bottom of the HMA layer.	The structure is New Flexible. Asphalt CDF was not computed. Design Life = 20 years. A design for this section was completed on 08/24/11 at 14:04:39.

Computing Fatigue in the HMA Layer

The user can access the optional program features including the HMA layer CDF by clicking on the Options button from the starting screen, or by pressing ALT-O from anywhere in the program.

Computing Fatigue in the HMA Layer

To compute the HMA fatigue, uncheck the "No HMA CDF" box and re-run the design. -

Computing Fatigue in the HMA Layer

As this example demonstrates, the controlling feature is almost always the subgrade.

(i.e., the subgrade CDF has reached 1.0 (failure) while the HMA CDF is still 0.06.)

Minimum Base Course Requirements

- FAARFIELD will automatically determine the minimum base layer requirements.
- Users can do this step manually if desired by deselecting this option.
 - Remove subbase layer and increase subgrade CBR to 20.
 - Re-run the design to obtain the minimum base thickness.

- Convert 452.5 mm of P-209 to stabilized base.
- For this example, use P-401 as stabilized material. Convert to P-401 by dividing the layer thickness by 1.6 as provided in AC 150/5320-6E, 314(d).

$$-T_{P401Base} = T_{P209} / 1.6$$

 $- T_{P401Base} = 452.5 \text{ mm} / 1.6 = 282.8 \text{ mm} (say 300 \text{ mm})$

 Program performs this calculation automatically when automatic base design is enabled.

Final Thickness Design

 Reconstruct the original pavement section.

 Stabilized P-401 base at 300 mm

•P-209 as the improved subbase material (design layer).

 CBR returned to: design value.

Click "End Modify"

Final Thickness Design

Press ALT-O to bring up the **Options window.**

Uncheck "Enable **Automatic Base** Design)

Final Thickness Design

The final layer thickness requirements are now visible.

Section Names		PROJECT	NewFlexible De	s. Life = 20
NewFlexible		Layer Material	Thickness (mm)	Modulus or R (MPa)
		P-4017 P-403 HMA Surface	e 125.0	1,378.95
		(P-4017 P-403 St (flex)	300.0	2,757.90
	->	P-209 Cr Ag	447.2	346.62
Design Stopped 4.64; 3.42	****	Subgrade N = 2; HMA CDF = 0.06; \$	CBR = 8.0 Sublayers; Subgrade	82.74 CDF = 1.00; t = 872.2 mm
Back Help		Life Madifu Struct	Design Stru	Ichra Save Structure

Final Thickness Design

Thank You ¡Gracias!

Questions? ¿Preguntas?

FAARFIELD 1.3 Data Entry/Flexible Design September 13, 2012

Flexible Overlay Design FAARFIELD 1.305 Hands-On Training

Presented to: IX ALACPA Seminar on Airport Pavements Ciudad de Panamá, Panamá

By: David R. Brill, P.E., Ph.D.

Date: September 13, 2012

Federal Aviation Administration

Asphalt Overlay Design

Asphalt Overlay Design

Asphalt Overlay Design - Copy Basic Section

Asphalt Overlay Design - Copy Basic Section

7 Basic Starting Structures in FAARFIELD

Section Name	Pavement Type
ACAggregate	New flexible on aggregate base
AConFlex	HMA overlay on flexible pavement
AConRigid	HMA overlay on rigid pavement
NewFlexible	New flexible on stabilized base
New Rigid	New rigid on stabilized base
PCConFlex	PCC Overlay on flexible
PCConRigid	Unbonded PCC on rigid

Be sure to select the pavement type that most correctly represents your design requirements.

Asphalt Overlay Design / Copy a Sample Pavement Section

Asphalt Overlay Design / Create a New Job Title

Asphalt Overlay Design / Create a New Job Title

Asphalt Overlay Design / Working With a Pavement Section

Asphalt Overlay Design

Asphalt Overlay Design

Asphalt Overlay Design Add Airplane Information

Use the traffic mix from the new flexible pavement example.

Use the "Float Airplanes" functions to do this without having to enter the data a second time.

Performing Overlay Design

The layer with the small arrow is the layer that will be adjusted to provide the structural design.

The location of the arrow is determined by the type of structure.

1	😨 FAARFIELD - Modify	and Design Section AConFlex in Job Workshop	\mathbf{X}
he	Section Names	Workshop AConFlex Des. Life = 20	
he	NewFlexible	Layer Thickness Modulus or R Material (mm) (MPa)	
e		→ P-401/P-403 HMA Overlay 100.0 1,378.95	
vide		P-401/ P-403 HMA Surface 125.0 1,378.95	
		Variable St (flex) 275.0 1,034.21	
the		P-209CrAg 480.0 517.11	
he •			
0.	Status <u>Airplane</u>	Subgrade CBR = 8.0 82.74 Total thickness to the top of the subgrade, t = 980.0 mm	
	<u>Back</u> <u>H</u> elp	Life Modify Structure Save Structure	

Performing Overlay Design

Result of Overlay Design

Software Available at:

- <u>http://www.faa.gov/airports/engineering/</u> <u>design_software/</u>
- <u>http://www.airporttech.tc.faa.gov/naptf/</u> download/index1.asp

Thank You ¡Gracias!

Questions? ¿Preguntas?

FAARFIELD 1.3 Data Entry/Flexible Design September 13, 2012

